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Probabilistic Modeling of Service Life for Structures

Subjected to Chlorides
by Evan C. Bentz

Most current service life models of reinforced concrete structures
subjected to chloride loading produce only a single deterministic
time to first corrosion. Some feel that probabilistic modeling of
corrosion is difficult to understand, tediously slow to calculate,
and of limited value due to strong dependency on the assumed
input parameters. Using a linearized analysis method, verified by a
modified Monte Carlo technique, this paper shows that answers of
acceptable accuracy can be obtained with only a few seconds of
calculation on an inexpensive computer. The method is explained
and shown with examples. Using such a technique, it is felt that
probabilistic analyses of time to first corrosion can be demystified
and achieve regular usage.
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INTRODUCTION

Billions of dollars are spent in North America each year on
repairs to bridges and parking decks prematurely damaged
due to corrosion of reinforcing steel. Often this corrosion is
aresult of chloride ingress to the reinforcement from deicing
salts, groundwater, or seawater. Many different methods of
preventing this damage exist, ranging from mechanical barriers
such as membranes, chemical protection schemes such as
corrosion inhibitors, and protection through improved concrete
quality. To assist in comparing these options on an equal
footing, a program called Life-365'"2 has been written to
estimate when first corrosion will occur for such structures.

Life-365, like many other programs, is deterministic in its
operation, meaning that it will produce only one predicted
time to the initiation of corrosion for one set of input parameters.
This single output contrasts with the well-known fact that
concrete structures are quite variable in properties both
throughout the structure and in terms of quality of construction
and materials from one project to another. It would be useful
if programs like Life-365 were able to predict a range of
expected times to first corrosion rather than a single value to
allow owners to better manage risk. This paper proposes a
method of quickly determining the cumulative distribution
function of when first corrosion is expected for a reinforced
concrete structure. Thus, designers and owners will be able
to base the selection of corrosion protection schemes on a
chosen risk of corrosion. It is hoped that this method can be
implemented into Life-365 soon so that additional confidence
in the analyses made with the program can be obtained.

RESEARCH SIGNIFICANCE
Service life prediction models are becoming more widely
used as cost-benefit analyses become required practice to
select from alternative corrosion protection strategies. It is
important to provide engineers with a way to measure the
confidence they should place in the results of these service life
predictions. The most rigorous way to do this is to provide
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full probabilistic results that allow the engineers to do what-
ever they wish, with the results ranging from a simple
visual check of plots to complex financial calculations.

PROBABILISTIC METHODS FOR
SERVICE LIFE MODELING

There are a number of methods for determining a probabilistic
estimate of the time to first corrosion of a structure. These
can be divided into two main categories: implicit and explicit.

Implicit probabilistic methods for service life modeling
directly integrate equations for probability density functions
into the equations modeling chloride transport. These methods
usually result in a set of equations that directly predict the
probability of corrosion at a given time. These have the
advantage of a direct solution, but the disadvantage in the
fact that the mathematics can be difficult for complex consti-
tutive relationships. As an example, the Life-365"2 primary
modeling equations directly include the effects of temperature,
time-dependent changes in the diffusion rate, and relatively
complex changes in the surface chloride levels. For the
case of the surface chlorides alone, there is no simple equation
for the changes with time for the case of membranes or sealers,
making it quite difficult to model with an implicit probabilistic
method. Examples of an implicit probabilistic method can be
found in papers by Sagiiés and Kranc.?

Explicit methods do not require direct modification of the
governing equations. One explicit method is based on the
well-known reliability methods such as the first-order
reliability method (FORM) or second-order reliability
method (SORM). These methods use a limit-state function
(g-function) that defines the difference between capacity and
demand. Implicitly, these methods assume that the capacity
and demand are bivariate normally distributed. For a reinforced
concrete corrosion problem, the capacity might be defined as
the chloride threshold required to depassivate the steel and
the demand might be defined as the chloride concentration at
the steel at a given time. While the former of these may be
reasonably assumed to be normally distributed, from lack of
information alone, the latter is less clearly so. FORM/SORM
methods are most appropriate for the determination of very
small probabilities of failure—for example, against structural
collapse—and the level of detail employed may not be necessary
for corrosion analyses. They also have the disadvantage of
appearing as a black box in the analysis. Examples of a
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FORM-based probabilistic analysis of reinforced concrete
service life can be found in papers by Lindvall,* for example.

Another explicit method is the traditional Monte Carlo
simulation. Using the assumed probability distributions of
the input parameters, this method randomly selects inputs to
the model and calculates the output. This is repeated until a
sufficient histogram of output data is obtained and, as such,
generally requires laborious calculation. Potential pitfalls are
in the commonly used assumption that all the variables are
independent, though that may not be the case. More importantly,
it is not necessarily clear when sufficient iterations have
been performed. An example of a method that uses Monte
Carlo Simulation is a program from NIST by Ehlen.’

In this paper, an approximate explicit method that is based
on the assumption of a probability distribution function
and some simple calculations will be shown to work
acceptably well. The method will be compared with a
modified Monte Carlo method.

DETERMINISTIC MONTE CARLO METHOD

To calculate probabilities of failure for a structure, a modified
Monte Carlo method will be used. Given the very limited
information about the statistical variation of a number of the
input parameters for service life analyses, it is inappropriate
to calculate answers to a high level of precision. Accepting
this coarse precision, it becomes possible to convert the
Monte Carlo method into a deterministic one that has a
predefined number of steps that will cover the entire input
domain. Figure 1 shows a normal curve divided into eight
sections, each with a probability of 0.125. At about the
centroid of each region is a discrete point that represents the
characteristic value for that region. The locations of these
points are positive and negative 1.65, 0.89, 0.47, and 0.155
standard deviations from mean. By varying each set of the
input parameters through all eight of these calculation
points, it becomes possible to know exactly the number of
iterations necessary to fully cover the input domain and
produce a reasonable estimate of the solution. For example,
if there are five input variables, each normally distributed, a
total of 8 = 32,768 iterations would be necessary to cover
the input value domain. Thus, the method will produce a
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probability distribution for the time to first corrosion of a
structure without the question of deciding how many iterations
are needed. Certainly 32,768 iterations is very significant,
but this was chosen as the results will be used to confirm the
quality of the simplified analysis method as follows. On
an inexpensive 2002 computer, the Monte Carlo analysis
took about 1 h to produce a set of results.

INPUT PARAMETERS FOR CHLORIDE MODEL

The input parameters for the modified Monte Carlo analysis
explained in this paper will be based on Life-365.1? The
program accepts basic mixture proportion information from
the user and estimates the diffusion rate at 28 days as well as
the rate of change of this diffusion rate with respect to time.
The location and general exposure of the structure is used for
temperature profile throughout the year as well as the surface
chloride loading expected for the structure. As such, the
equations that estimate the time to first repair are dependent
on the following parameters:

1. Diffusion rate at 28 days, D,

2. Slope of diffusion plot with respect to time on log-log
plot, m;

3. Maximum surface chloride level (not constant, builds
up over few years), C;

4. Chloride threshold to initiate corrosion of steel, C;;

5. Clear cover to reinforcement, cover; and

6. Propagation period, 7,,.

The statistical variation in each of these variables will be
discussed as follows. In each case, the default values from Life-
365 will be assumed to be the mean of the distribution, leaving
the coefficient of variation to be estimated.

Variation in diffusion rate D, ¢

The diffusion rate depends on many different parameters,
but the model in Life-365 assumes that the water-cementitious
material ratio (w/cm) is the prime variable. The top plot in
Fig. 2 shows the results of 124 test results from an electrical
migration test.® While this is not the type of experiment used
to generate the diffusion equation from Life-365, and hence
the values it calculates are significantly different, it is useful
for statistical purposes as there are so many data points from
the same laboratory. The trend of the data with respect to w/cm
is the same as predicted by Life-365. Also drawn on the top
plot are bands 50% higher than the mean and 50% lower than
the mean. The bottom plot shows the distribution of the ratio
of the experimental diffusion rate to that predicted from the
line through the center of the data. It can be seen that the data
is reasonably normally distributed, with a coefficient of
variation of 17%. Thus, it is possible, using a consistent test
setup, consistent lab technicians, and single analysis method,
to achieve reasonable stable measures of diffusion constant.

The top of Fig. 3 shows the data used to calibrate the
equation for the diffusion constant used in the Life-365
development process.1 These tests were bulk diffusion tests of
a different type than in Fig. 2 and, more importantly, were
performed in different labs by different operators. It can be
seen that there is certainly more scatter to the data but that the
general trend of a normally distributed result is acceptable.
Not all the data shown in this figure were originally used in the
calibration of the relationship in Life-365, and, as such, the
average of the ratio of experimental to predicted diffusion rate
is not equal to 1.0 but 1.15. Two outlier points are present in
the data with measured diffusion rates 2.5 times the mean.
Considering these points, the coefficient of variation of this
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Fig. 2—Variation in diffusion rate within one lab.%

multi-lab study is 37%, and, ignoring them, the coefficient of
variation is 21%, both significantly higher than that obtained
from a single lab study.

For the analyses performed herein, it is not clear whether
statistical parameters based on individual laboratory results
or the results from a multi-lab study should be used. For the
purposes of this paper, the coefficient of variation of the
diffusion value will be assumed to be 25%.

Variation in diffusion rate with time, m

Unlike the diffusion rate, for which there is a clearly defined
test procedure to determine its value, the other parameters in
the model, including m, are a source of some contention.
Work continues on determining standard tests for all these
parameters, but for now a less scientific approach must be
used. The parameter that controls the change in diffusion rate
with time is called m, and in the program Life-365 it was
determined based on a consensus approach, guided by what
long-term data did exist. The parameter m varies between
0.2 and 0.6, with the higher end for concrete containing fly
ash or slag and the lower end for regular portland cement
concrete. For this paper, a normal distribution will be assumed
with a fairly arbitrarily selected standard deviation of 0.05 or
a coefficient of variation of 25% for ordinary portland
cement concrete.

Variation in surface chloride level, Cg

Surface chloride levels vary dramatically from location to
location within a structure, as well as between structures in
the same city and from city to city across the continent. The
variation from city to city is modeled by Life-365, but the
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Fig. 3—Variation in diffusion rate between different labs.!

other variations are not modeled. For this analysis, the
coefficient of variation of surface chloride levels will be
assumed to be 30%.

Variation in chloride threshold, C;

The chloride threshold level to cause initiation of corrosion is
also lacking a standard test method to quantify it. Glass and
Buenfeld suggest that a threshold value can be expected to
fall into a range of 0.03 to 0.07% total chloride by mass of
concrete.” Life-365 splits this range to provide the default
value of 0.05%. Also based on this suggested range, the
distribution in C; will be assumed as normally distributed
with a standard deviation of 0.01% total chloride by mass of
concrete or a coefficient of variation of 20%.

Variation in cover

Cover depths can vary significantly over a structure due to
quality of construction, reinforcement geometry, and,
occasionally, quality of design. Assuming a tolerance of
reinforcement placement of +10 mm, the distribution on
cover depth will be taken as normally distributed with a
standard deviation of 5 mm.

Variation in propagation period, t,

Perhaps the least understood parameter in the life cycle
model is the propagation period between the initiation of
corrosion and the first major damage that necessitates repair.
In recent ACI committee meetings, suggestions have been
made that this parameter may exceed the value of 6 years
used by Life-365 by almost an order of magnitude for high-
performance concrete. Due to this severe uncertainty in
evaluation, this parameter will be removed from the probabilistic
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analysis. This paper will therefore only refer to probabilistic
times expected until first corrosion initiation, ignoring the
propagation period. Much more research is needed to answer
the question of an appropriate propagation period for reinforced
concrete structures.

APPLICATION OF MONTE CARLO METHOD

The aforementioned method is applied to a simple analysis of
a concrete structure. Table 1 summarizes the input parameters
for this analysis. The surface chloride level is selected by
Life-365 as being reasonable, if a little severe, for the Toronto
region, with surface chlorides increasing linearly from zero
to a maximum total chloride level of 1.0% of concrete mass
achieved after 3.8 years. After this time, the chloride level is
taken as constant. Any variation in this surface level is assumed
to scale the entire profile, leaving the 3.8-year transition
point intact. The temperature is adjusted by the time of year
based on published temperature profiles for the city of
Toronto. The concrete is assumed to have a water-cement
ratio (w/c) of 0.42 with no fly ash, silica fume, or slag,
producing the diffusion rate and m parameter listed in Table 1.

Figure 4 shows the results of applying the modified
Monte Carlo method to these input parameters as a histogram
of time to corrosion initiation. It can be seen that the resulting
distribution appears more as a log-normal distribution than a
normal one. This is not unexpected, as any arbitrarily distrib-
uted variables that are multiplied together will tend to
produce a log-normal distribution by the central limit
theorem. While the equations of Life-365 are not simple
products internally, they are closer to that than sums. The
median value of the distribution is 6.9 years, which is similar,
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Table 1—Parameters for base case analysis

Standard | Coefficient of

Variable Units Base value deviation variation
D,s m?/s 8.87E-12 2.22E-12 0.25
m — 0.20 0.05 0.25
Max C; % Cl 1.0 0.30 0.30
C, % C1 0.05 0.01 0.20
Cover mm 60 5 0.08

i years 6 — —

though not identical, to the predicted time to corrosion initia-
tion of 6.58 years if mean values are used for all parameters
in Life-365. This difference is due to the nonlinear nature of
the calculations for time to first corrosion.

Figure 5 shows the same results but converted to a cumula-
tive distribution. Additionally, the 6-year propagation period is
added to give estimates of when repairs will be needed for this
structure. It can be seen that for this structure, the 10th percen-
tile of corrosion occurring is about 2 years before the 50th
percentile. That is, there is a 10% chance that the first repairs
will be required after about 11 years rather than 13 years after
construction. On the other hand, there is only a 10% chance the
structure will survive 15 years until first repairs are required.

To explore the sensitivity of the results to the input parameters,
additional analyses were performed with the aforementioned
coefficients of variation of the input parameters increased by
50%, each in turn. Figure 6 shows the effect on the cumulative
distribution if the coefficient of variation of the diffusion
constant is increased from 25 to 37.5%. It can be seen that the
distribution changes but not by an unreasonable amount. The
cumulative profiles were found to be most sensitive to the m
parameter, diffusion rate, and cover, with significantly less
sensitivity to variability of the threshold value or variation in
surface chloride levels.

An additional analysis was done for similar conditions as
the previous base case example but with 40% of the cement
replaced with class F fly ash. Life-365 suggests that this will
result in identical parameters as the previous example but
with the m parameter increased to 0.52. An analysis with
Life-365 suggested that the expected time to first corrosion
would be 31.1 years. Figure 7 shows the cumulative distribution
results of the modified Monte Carlo analysis for this case.
For this analysis, the standard deviation of the m parameter
was kept at 0.05, essentially lowering the coefficient of
variation to 9.6%. Note the 50th percentile of the Monte Carlo
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initiation results, at 33.0 years, is significantly higher than
the single analysis with mean parameters selected. This
additional 1.9 years of life at the 50th percentile level is not
accounted for in current models and is due to the nonlinear
nature of the basic equations in the analysis.

SIMPLIFIED PROBABILISTIC ANALYSIS

While the shown results are very useful for the purposes of
selecting alternative concrete protection strategies, the analysis
time of 1 h per scenario means that it is not practical to use
the Monte Carlo analysis method today. A simplified method
will hereby be proposed that produces very similar answers
in a matter of seconds of computation time.

Consider the analysis method inside a service life model,
such as Life-365, as solving the following equation

t;=f(D, m, C, C,, Cover) (D)

where ¢, is the time to corrosion initiation. To estimate the
coefficient of variation of this equation, linearize the equation
about its mean values. Thus

o 1+ M (D—5)+% (m—m)+ M )
(Cs_a)+ E (C,—a)+ T, (Cover— Cover)
i TCover|,,

where the small ms indicate the partial derivative is evaluated
at mean values. That is, the initiation time can be approximated
as equal to the mean value of the initiation time plus the
partial derivatives of Eq. (1) multiplied by differences from
the mean. Because Eq. (2) is a linear combination of
assumed independent random variables, its variance is

2_ ol o? 2 ot 6 2 &l |
Sti - éﬂ_D mg (SD) + éﬂ_m mg ( m) + éﬂ_q mﬂ (3)
2 ot | & 2.2 Ty | 6 2
(S v) + i (S ) + 2 ! (S over)
“ ®1c, mg “ " &cover|, 2 €

This equation provides a simple method of estimating the
variance and hence the standard deviation of the results of a
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probabilistic analysis of time to corrosion initiation. If it is
further assumed that the distribution, as suggested by Fig. 4,
is log-normally distributed, and that the 50th percentile of the
final analysis is equal to the results of the analysis performed
with mean values, it is only necessary to determine the
partial derivatives in Eq. (3) to approximate the entire
distribution. These derivatives may be determined numerically,
using any deterministic service life model. Thus, the estimation
of the probabilistic results for an analysis will take six
deterministic calculations, rather than the single calculation
it takes otherwise: one analysis at the mean of the input
parameters, plus one analysis to calculate each of the partial
derivatives in Eq. (2) and (3).

The equation of the log-normal distribution for any time ¢
greater than zero is

1 -1 —(nr-a)’=b?
e

t
2pb

f) = “

where In ¢ is the natural logarithm of 7, and & and b are statistical
parameters calculated within the following three steps to
perform the simplified analysis:

1) Assume that the 50th percentile of final distribution is
the same as the result of the analysis performed with all
parameters set to mean values. Thus, a regular analysis from
programs as they stand today producing a given ¢; allows the
calculation of a =1In 1;;

2) Estimate partial derivatives of the five variables in the
analysis by incrementing the value of these parameters by
10%, performing a deterministic analysis and dividing the
change in time to corrosion by the increment. This must be
performed for each variable in turn. Refer to Table 2; and

3) Calculate the b parameter from Eq. (3) and as shown in
Table 2.

Figure 8 compares the results of the Monte Carlo analysis
to the new estimation technique described previously and in
Table 2. It can be seen that the results are excellent for this
case. Figure 9 compares the cumulative distribution from the
Monte Carlo analysis with this simplified method. Again, the
fit is excellent up to a probability of corrosion of about 70 to
80%. As the most likely use of this probabilistic information
is on the lower end of the distribution, it is judged acceptable
that the upper region of the curve is modeled less well. Note
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Table 2—Estimation of beta parameter*

Derivative calculation

Variable Units Base value Increment to variables Modified variable Initiation time, years In(z;) Partial derivative
D,f m?/s 8.87E-12 8.87E-13 9.76E-12 6.14 1.81 —7.803E+10
m — 0.20 0.02 0.22 7.15 1.97 4.154
Max C, % Cl1 1.0 0.1 1.1 6.38 1.85 -0.309
C; % Cl1 0.05 0.005 0.055 6.82 1.92 7.165
Cover mm 60 6 66 7.66 2.04 0.025
Beta parameter estimation
Variable Units Partial derivative Coefficient of variation Standard deviation Eq. (3) calculate Contribution to variance, %
D,r m?/s —7.803E+10 0.25 2.218E-12 0.030 29.1
m — 4.154 0.25 0.05 0.043 42.0
Max C, % Cl1 -0.309 0.3 0.3 0.009 8.3
C; % Cl1 7.165 0.2 0.01 0.005 5.0
Cover mm 0.025 0.083 5 0.016 15.6
Sum to get b? 0.103
b= 0.321

*t;=6.58 years; In(t;) = 1.884.
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that the analysis results in the simplified method are obtained
essentially instantaneously versus the hour taken for the
comparison Monte Carlo analysis.

An additional advantage of the method is that it provides
an indication of the source of the variation in the results. The
final column on the bottom in Table 2 shows the contribution
to variance, which indicates how much of the b? parameter
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derives from each of the variables. In this example, it is
confirmed that the results are most sensitive to the m and
D parameters.

A weakness of the method is the assumption that the 50th
percentile of the distribution is equal to the analysis result
using mean values for all the variables. Figure 10 compares
the results of the simplified method with the cumulative
distribution for the 40% fly ash case mentioned previously.
It can be seen that while the shape of the distribution is well
modeled, there is an offset between the approximate method
and the more complex Monte Carlo method of 1.9 years. As
current analyses that do not use probabilistic calculations are
judged to be acceptable even though they do not account for
the short advantage shown by the Monte Carlo method, the
results are considered acceptable.

COMMENTS ON USE OF PROBABILISTIC DATA

Using the approximate aforementioned method, there is no
strong reason that probabilistic methods cannot be practically
used for service life models. The method can be performed
with the deterministic versions of programs, but it is hoped
that future versions of Life-365 will be able to implement the
method automatically.

The availability of probabilistic results merits some brief
discussion of their use. Engineers are all familiar with the
advantages of being conservative in design to ensure that
there is no injury or loss of life caused by a failure within a
structure. It is not unusual to design structural components
with a probability of failure of one part in one million. This
level of conservativeness could theoretically also be prescribed
for service life models as well. The author feels that this
would be a mistake, however, as the consequences of a
service life failure are much less severe than a strength failure.
Unlike structural design where a failure is never to occur,
corrosion initiation is essentially guaranteed to eventually
occur. As such, an early corrosion initiation will simply
cause the structure to require repairs earlier than expected.
While this will cause an unexpected expenditure of money,
it will not cause loss of life.

Figure 11 shows a comparison of time to first corrosion for
the base case analysis compared with the 40% fly ash case.
It can be seen that the expected life extension from the use of
fly ash in the concrete depends on the probability selected by
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the designer. If an owner has many structures, such as a
Department of Transportation, it is felt to be most appropriate
to make service life decisions based on a 50th percentile of
failure analysis. If some structures require repairs before this
time, others can be expected to require repairs at a later age
to balance out the overall costs. An owner with only a single
structure may decide to aim to a lower probability of failure,
say 10 rather than 50% to estimate the timing of future costs.
In either case, the provision of an envelope of expected results
provides much additional information allowing more intelligent
decisions about future costs to be made.

CONCLUSION

Probabilistic analyses of service life of reinforced concrete
structures can take many forms. A modified Monte Carlo
analysis method is described that allows calculation of
probability distributions within a known time of when the
initiation of reinforcement corrosion is expected for a structure.
Representative values of variability of the parameters used in
analysis are provided. Analyses show that the resulting
probability distribution is most sensitive to the diffusion rate
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and the parameter that controls how that rate changes with
respect to time. A simplified analysis method is also proposed
that allows very fast estimation of the probability distributions
of time to first corrosion in only a few seconds using any
deterministic service life analysis program. The method is
demonstrated with an example and it is felt that the method
in this paper makes the calculation of probabilistic distributions
of time to first corrosion very simple. Hence, it is now very
practical to use such distributions in making engineering
judgments of the selection of reinforcement corrosion
protection strategies.
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